
Sitecore Commerce Connect
The Commerce Connect Integration Guide Rev: 5 January 2015

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Sitecore Commerce Connect

The Commerce Connect
Integration Guide
A De ve l o p e r's Gu i de to i nteg ra t ing Co mme rce Co n n e ct w i th a n e xtern al co mme rce syste m

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 2 of 61

Table of Contents

Chapter 1 Introduction... 4
Chapter 2 Integrating with Commerce Connect ... 5

2.1 Overview .. 6
2.1.1 A Customizable Domain Model ... 6
2.1.2 Service Layer API ... 7

Service Methods ... 7
Request Parameters ... 7
Re sult objects ... 8

2.1.3 Pipelines... 8
2.1.4 Passing Data between Pipeline Components .. 14
2.1.5 System Message s .. 14
2.1.6 Success.. 14
2.1.7 Configuration .. 14
2.1.8 EntityFactory .. 15
2.1.9 EaPlanProvider... 16
2.1.10 ContactFactory ... 16
2.1.11 ItemClassificationService .. 16
2.1.12 CommerceContext.. 16
2.1.13 ServiceProviders .. 16

2.2 Service Layer Specifics .. 18
2.2.1 Cart Service Layer .. 18

Different ways to work with an ECS... 18
Configuration .. 18
Entities.. 18
Storing a copy of the cart locally.. 19
Abandoned Cart Engagement Automation plan ... 19

2.2.2 Orders Service Layer .. 19
Configuration .. 19
Entities.. 19
New Order Placed Engagement Automation Plan.. 20
Pipelines ... 20

2.2.3 Inventory Service Layer .. 20
Pipelines ... 20
Configuration .. 21
Entities.. 21
StockStatu s and StockDetailsLevel Entities ... 21
Extending the InventoryProduct Entity ... 22

2.2.4 Cu stomers and Users ... 23
What is the difference between a User and a Customer... 23
Different ways to work with an ECS... 23
Configuration .. 23
Entities.. 23
Pipelines ... 24

Chapter 3 Product Synchronization ... 25
3.1 The basics of product synchronization .. 26

3.1.4 Integrating with Connect... Error! Bookmark not defined.
3.1.1 Repository design pattern ... Error! Bookmark not defined.
3.1.2 2-way synchronization .. 26
3.1.3 Pipeline pattern... 27
3.1.4 Integrating with Connect ... 30

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 3 of 61

3.1.5 Repository design pattern ... 32
3.1.6 ID Mapping ... 33
3.1.7 Indexing.. 33

The default index .. 34
The product index ... 34

3.2 The Connect product data model.. 37
3.2.1 Minimum product concepts ... 38

3.3 Item templates and structure .. 40
3.3.1 Item Templates used in the Product Data Model ... 40

Rule of Thumb and Naming Conventions .. 40
Item templates .. 40
Branch templates .. 44

3.3.2 Main product data in one product repository bucket ... 45
Product Variants ... 46

3.3.3 Product relations, resource s and specifications ... 46
3.3.4 Specifications ... 47

Specification ... 48
Specification values .. 49

3.4 The Object Domain Model .. 50
3.5 How to Implement a Custom Product Entity .. 51
3.6 How to Create a Cu stom ResolveChangesProce ssor ... 53
3.7 How to Create a Cu stom Synchronization Strategy... 55
3.8 How to Implement a Custom ID Generator.. 57
3.9 Performance tuning .. 59
3.10 Delayed Bucket Synchronization .. 61

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 4 of 61

Chapter 1

Introduction

Commerce Connect is an e-commerce framework designed to integrate Sitecore with

different external commerce systems and at the same time incorporate customer

engagement functionality provided in the Sitecore Customer Engagement Platform

(CEP).

Commerce Connect consists of an integration API that incorporates customer tracking by

triggering goals and page-events, and uses engagement automation plans for following -

up on customer interaction. In addition, Commerce Connect comes with e-commerce
specific rendering rule conditions for acting on the customer interactions, cart content an d

orders placed etc.

For a general introduction and overview of the components in Commerce Connect, see

the Commerce Connect Overview document.

This guide describes the architecture, API and configuration of Commerce Connect for

API developers who create connectors for integration with external commerce systems.

If you are a developer who create Sitecore solutions and are looking for information about

how to use Commerce Connect for creating B2C or B2B shops with e-commerce

functionality, see the Commerce Connect developer’s guide

 Chapter 1 — Introduction
This chapter contains an introduction for this guide.

 Chapter 2 — Integrating with Commerce Connect
This chapter describes the Commerce Connect Connector architecture and how to

customize it as a backend developer creating integration with an external commerce

system.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 5 of 61

Chapter 2

Integrating with Commerce Connect

A Commerce Connect connector is needed to integrate Commerce Connect with an

external commerce system (ECS). The typical connector consists of a number of custom

processors inserted in the Commerce Connect defined pipelines, and works with the

ECS, either directly or through a web service.

Different service layers work independently of each other and can therefore be integrated

independently. For example, products, carts and prices could be integrated from three

different systems.

There are common features and unique features for each ECS and typically data is

stored in different ways.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 6 of 61

2.1 Overview

All of the Commerce Connect integration service layers are based on:

 A customizable domain model .

 An API exposed as a service layer with the methods accepting customizable request objects and

returning customizable result objects.

 A number of pipelines, one or more per service method.

The following sections describe each of the above bullet points in more details.

2.1.1 A Customizable Domain Model

Each service layer contains a set of entity classes reflecting the domain model. The domain model
objects are used when operating with the APIs. The APIs accepts the objects as part of the input

parameters and return objects.

The domain model has purposely been kept at a minimum, knowing that all vendors to some degree store
different information and one model will not fit all. However the domain models include enough

information, domain objects and parameters to cover the common scenarios that are used in all shops.

It is expected that some of the domain model objects are customized for each integration with a different

ECS. Commerce Connect might contain domain objects that have no corresponding implementation in

the ECS and in those cases it is OK to leave them as-is. For more information see the detail s in the

corresponding section for each service layer.

With product synchronization there is in addition to the domain model objects also a corresponding item
domain model matching the entity classes. The entities can be customized by changing the configuration

section. For more information see the next section and section 2.1.8.

The domain models are customizable so that:

 All domain model objects can be inherited and extended with custom properties

o All nested objects can be inherited and extended with custom properties

o All service methods keep the existing defined signature, even when used with customized
domain objects

It’s recommended to create an abstraction layer on top of the ECS that extracts and manage the

information to be exchanged with Commerce Connect. The approach is similar to the Bridge design

pattern used in computer science and makes it easier to continuously manage the integration as both

Commerce Connect and the ECS evolves over time. It also makes it easier to exchange the information, if
the Commerce Connect domain model and the ECS abstraction layer objects have corresponding and

similar object signatures.

Some of the service layers save data in Sitecore , as well as pass the data on to the ECS. Whenever data

is persisted in Sitecore, the Repository pattern is used to manage loading and saving data. This makes it

easy to replace the actual repository where data is persisted. For more information see the Service Layer

API section as well as MSDN and Fowler.

http://msdn.microsoft.com/en-us/library/ff649690.aspx
http://www.martinfowler.com/eaaCatalog/repository.html

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 7 of 61

2.1.2 Service Layer API

Every service layer API contains a number of abstract and generic methods for communicating with the
ECS. Information flows in both directions. Product information, prices, and stock information needs to be

read from the ECS so that it can be presented to the visitor on the UI. Shopping Cart content, customer

account information and shipping information must be parsed over to the ECS so that an order can be

created.

The default service layers should be sufficient in most cases, but they can be customized and substituted.
For more information, see the appropriate sub system in the following section.

Each method on the service layers accepts a single Request object and returns a single Result object.
Both the Request and Result objects can be customized indiv idually for each method for maximum

flexibil ity. The service layer interface remains the same, even when the domain model objects are

customers, in addition to the parameters going in and the returned results.

If you have customized the Request or Resul t object for a method, then you can use the corresponding
extension method, which accepts generics.

Example:

The default method signature for adding a line to a shopping cart looks like this:

public virtual CartResult AddCartLines([NotNull] AddCartLinesRequest request)

and the generic version of the same method looks like this:

public static TAddCartLinesResult AddCartLines<TAddCartLinesResult>([NotNull] this

CartServiceProvider cartProvider, [NotNull] AddCartLinesRequest request)

Service Methods

If possible, the following naming convention should be used for all methods on a service provider:

 CreateEntityName (e.g. CreateCart)

 GetEntityName (e.g. GetCart)

 DeleteEntityName (e.g. DeleteCart)

 UpdateEntityName (e.g. UpdateCart)

If possible, the following naming convention should be used for all methods that manipulate related items
on an entity:

 AddRelatedEntityName (e.g. AddLineItem)

 RemoveRelatedEntityName (e.g. RemoveLineItem)

 UpdateRelatedEntityName (e.g. UpdateLineItem)

Request Parameters

A service method should take only a single request object as a parameter and that request object must

inherit from a ServiceProviderRequest. By using a single request object instead of multiple

parameters, the same service methods remain usable regardless of the customization. As service

methods require additional data to function, simply extending the request object with new parameters will

expose the newly required data to the presentation tier without ha ving to modify the service method.

Customizing request objects

There are two options when extending a request object to handle more parameters. The first option is to
simply extend the appropriate request class, similar to the following example :

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 8 of 61

 public class CustomLoadCartRequest : LoadCartRequest

 {

 public CustomLoadCartRequest(string shopName, string cartId,

 string userId, string customProperty)

 :base(shopName, cartId, userId)

 {

 this.customProperty = customProperty;

 }

 public string customProperty { get; protected set; }

 }

In some cases you will not be able to extend a request , instead, you can use the property bag on the
request to pass down any properties you want:

request.Properties["customProperty"] = "customValue";

Result objects

Result objects generally mirror request objects, with the difference that they inherit from

ServiceProviderResult and have a collection for system messages. If possible, always return

system messages instead of throwing exceptions.. There will be times where it makes sense to throw an

exception, but graceful recovery and exceptions are expensive actions.

You can set messages on a result by using the following pattern:

var message = (SystemMessage)this.entityFactory.Create("SystemMessage");

message.Message = “your custom error message goes here”;

args.Result.SystemMessages.Add(message);

2.1.3 Pipelines

Each service method launches a pipeline with the same name. As part of the initial pipeline being
executed, one or more additional or shared pipelines may be called and executed. For example,

SaveCart or SynchronizeProductArtifacts.

In Sitecore, the defaul t pipeline arguments contain Request and Result properties, which have

Properties of type dictionary, and can contain arbitrary data to be used by pipeline processors.

Commerce Connect uses the Request.Properties dictionary to store data that you need to
synchronize. There are processors that read and write the custom data.

Values that are stored in Request.Properties are internal temporary data used to carry information

between the processors in the pipeline. For example, the CreateOrResumePipeline includes the

FindCartInEAState processor that stores the ID of the cart. This ID is then used the RunLoadCart

processor to specify the ID of the cart to be loaded.

Data read and stored in the Request.Properties dictionary is visible between processors within the
pipeline.

The following table contains the data of the cart related the pipelines stored in the pipeline arguments

Request.Properties:

Pipeline

Property Name Data Description

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 9 of 61

Pipeline

Property Name Data Description

CreateOrResumeCart CartId Holds the ID of the cart found in the writer

processor and consumed by the reader

processor in order to load the cart from

the external system.

Writer processor

FindCartInEaState

Reader processor

RunLoadCart

ResumeCart CartSourceStateId Holds the ID of the cart state that the

MoveVisitorToInitialState

processor moves visitors from.

Writer processor:

CheckCanBeResumed

Reader processor:

MoveVisitorToInitialState

PreviousStateName Holds the name of state that the

TriggerCartResumedPageEvent

processor uses to resume a cart from.

Writer processor

CheckCanBeResumed

Reader processor

TriggerCartResumedPageEvent

CartDestinationState

Id

Holds the ID of the cart state that the

MoveVisitorToInitialState

processor moves visitors to.

Writer processor

CheckCanBeResumed

Reader processor

MoveVisitorToInitialState

The following table contains the data of the product related pipelines:

Pipeline

Property Name Custom Data Description

GetSitecoreProductLis

t

SitecoreProductIds Holds a list of the product IDs of

Sitecore.

Writer processor

GetSitecoreProductList

Reader processor

EvaluateProductListUnionToSync

hronize

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 10 of 61

Pipeline

Property Name Custom Data Description

SynchronizeClassifica

tions

SitecoreClassificati

onGroups

Holds the classification groups in

Sitecore to be synchronized.

Writer processor:

ReadSitecoreClassifications

Reader processor

ResolveClassificationsChanges

ClassificationGroups Holds the classification groups in the

external commerce system to be

synchronized.

Writer processor:

ReadExternalCommerceSystemClas

sifications

Reader processors:

 ResolveClassificationsCh

anges

 SaveProductClassificatio

nsToSitecore

SynchronizeClassifica

tionsSpecifications

ProductClassificatio

nGroups

Holds the product classification groups

to be synchronized.

Writer processor:

ReadExternalCommerceSystemClas

sificationsSpecifications

Reader processor:

SaveClassificationsSpecificati

onsToSitecore

SynchronizeDivisions SitecoreDivisions Holds product divisions in Sitecore to be

synchronized.

Writer processor

ReadSitecoreDivisions

Reader Processor

ResolveDivisionsChanges

Divisions Holds the product divisions in the

external commerce system to be

synchronized.

Writer processors:

 ResolveManufacturersChan

ges

 ReadExternalCommerceSyst

emManufacturers

Reader processor:

ResolveDivisionsChanges

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 11 of 61

Pipeline

Property Name Custom Data Description

SynchronizeManufactur

ers

SitecoreManufacturer

s

Holds the Sitecore manufacturer to be

synchronized.

Writer processor

ReadSitecoreManufacturers

Reader processor

ResolveManufacturersChanges

Manufacturers Holds a list of the manufacturers in the

external commerce system to be

synchronized.

Writer processor:

ReadExternalCommerceSystemManu

facturers

Reader processors:

 ResolveManufacturersChan

ges

 SaveManufacturersToSitec

ore

SynchronizeProductEnt

ity

ProductFromSitecore Holds the products in Sitecore to be

synchronized with the external

commerce system.

Writer processor:

ReadProductFromSitecore

Reader processor:

ResolveProductChanges

Product Holds a product from the external

commerce system with Sitecore.

Writer processor:

 ReadExternalCommerceSyst

emProduct

 ResolveProductChanges
Reader processor:

ResolveProductChanges

SynchronizeTypes SitecoreProductTypes Holds the product types in Sitecore to be

synchronized with the external

commerce systems.

Writer processor:

ReadSitecoreTypes

Reader processor:

ResolveTypesChanges

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 12 of 61

Pipeline

Property Name Custom Data Description

ProductTypes Holds the product types in the external

commerce systems to be synchronized

with Sitecore.

Writer processor:

ReadExternalCommerceSystemType

s

Reader processors:

 ResolveTypesChanges

 SaveTypesToSitecore

SynchronizeGlobalSpec

ifications

Specifications Holds the product specifications to be

synchronized.

Writer processor:

ReadExternalCommerceSystemGlob

alSpecifications

Reader processor:

SaveGlobalSpecificationsToSite

core

SynchronizeProductDiv

isions

DivisionIds Holds the division IDs to be

synchronized.

Write processor:

ReadExternalCommerceSystemProd

uctDivisions

Reader processor:

SaveProductDivisionsToSitecore

SynchronizeProductMan

ufacturers

ManufacturerIds Holds the manufacturer IDs to be

synchronized.

Writer processor:

ReadExternalCommerceSystemProd

uctManufacturers

Reader processor:

SaveProductManufacturersToSite

core

SynchronizeProductRes

ources

ProductResources Holds the product resources to be

synchronized.

Writer processor:

ReadExternalCommerceSystemProd

uctResourceBase

Reader processor:

SaveProductResourcesToSitecore

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 13 of 61

Pipeline

Property Name Custom Data Description

SynchronizeProducts ExternalCommerceSyst

emProductIds

Holds the product IDs in the external

commerce systems to be synchronized.

Writer processor:

GetExternalCommerceSystemProdu

ctList (pipeline:

GetExternalCommerceSystemProdu

ctList)

Reader processor:

EvaluateProductListUnionToSync

hronize

SynchronizeProductTyp

es

ProductTypeIds Holds the product type IDs to be

synchronized.

Writer processor:

ReadExternalCommerceSystemProd

uctTypes

Reader processor:

SaveProductTypesToSitecore

SynchronizeResources Resources Holds the product resources to be
synchronized.

Writer processor:

ReadExternalCommerceSystemReso

urces

Reader processor:

SaveResourcesToSitecore

SynchronizeProductRel

ations

RelatedProducts Holds the related products to be

synchronized.

Writer processor:

ReadExternalCommerceSystemProd

uctRelationsBase

Reader processor:

SaveProductRelationsToSitecore

SynchronizeTypeSpecif

ications

SpecificationCollect

ion

Holds the specification collection to be

synchronized.

Writer processor:

ReadSitecoreTypeSpecifications

Reader processor:

SaveTypeSpecificationsToExtern

alCommerceSystem

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 14 of 61

2.1.4 Passing Data between Pipeline Components

While all pipeline components in a pipeline should operate independently without knowledge of what
other components have done, there are going to be occasions, where information will need to passed

between components to avoid repeating the same action over and over again.

In these situations, use the RequestContext property of the base request object. This is a property bag
where you can store any information you need to pass between components.

request.RequestContext.Properties["componentSensitiveData"] = "customValue";

2.1.5 System Messages

The base result object returned from all pipeline requests contains a SystemMessages collection, which
should be used by all pipeline processors to communicate any messages from the ECS to the

presentation tier.

2.1.6 Success

The base result object returned from all pipeline requests contains a Boolean property called Success.

This property should be used to indicate if the initial request passed down to the pipeline was executed

successfully. It is recommended that in addition to setting the Success property to false, add a failure

message to the SystemMessages collection.

2.1.7 Configuration

Each service layer has an associated configuration stored in a separate include configuration fi le:

 Cart Service Layer - /App_Config/Include/Sitecore.Commerce.Carts.Config

 Orders Service Layer - /App_Config/Include/Sitecore.Commerce.Orders.Config

 Inventory Service Layer -

/App_Config/Include/Sitecore.Commerce.Inventory.Config

 Customers and Users Service Layer -
/App_Config/Include/Sitecore.Commerce.Customers.Config

 Pricing Service Layer - /App_Config/Include/Sitecore.Commerce.Prices.Config

 Product Synchronization Service Layer -
/App_Config/Include/Sitecore.Commerce.Products.Config

An additional configuration fi le,

Sitecore.Commerce.Products.DelayedSyncProductRepository.config.disable,

can be enabled if the synchronization of products into the Bucket occurs at the end of Commerce

Connect synchronization instead of immediately.

The Sitecore.Commerce.Config fi le contains the global configuration of Commerce Connect:

 EntityFactory

 EaPlanProvider

 ContactFactory

 ItemClassificationService

 CommereContext

Each is described in the following sections

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 15 of 61

2.1.8 EntityFactory

All entities used in Commerce Connect can be customized through configuration using an entity factory.
The Entity Factory is based on the Factory design pattern , and the default implementation is based on the

standard Sitecore Factory.

If another factory, Dependency Injection (DI) or Inversion of Control (IOC) implementation is preferred, the
default implementation can be replaced.

Follow these steps to use a custom factory:

 1. Create new custom factory class and implement IEntityFactory interface.

 The interface has one Create method that accepts a string containing the name of the entity to be

instantiated

namespace Sitecore.Commerce.Entities

{

 /// <summary>

 /// Creates an entity by entity name. The IEnityFactiry allows to substitute the

default entity with the extended one.

 /// </summary>

 public interface IEntityFactory

 {

 /// <summary>

 /// Creates the specified entity by name.

 /// </summary>

 /// <param name="entityName">Name of the entity.</param>

 /// <returns>The entity.</returns>

 [NotNull]

 object Create([NotNull] string entityName);

 }

}

 2. Register custom EntityFactory class in Sitecore.Commerce.config.

 To do this, change the type attribute value of “entityFactory” element to the custom EntityFactory
type.

<!-- ENTITY FACTORY

 Creates an entity by entity name. Allows to substitute default entity with

extended one.

 -->

 <entityFactory type=" Sitecore.Commerce.Entities.EntityFactory, Sitecore.Commerce”

singleInstance="true" />

The default implementation looks up the actual type to instantiate in the configuration. Each service layer

has its own section called <commerce.Entities>. Below are the default entities for Carts:

 <!-- COMMERCE ENTITIES

 Contains all the Commerce Connect cart entities.

 The configuration can be used to substitute the default entity implementation

with extended one.

 -->

 <commerce.Entities>

 <CartBase type="Sitecore.Commerce.Entities.Carts.CartBase, Sitecore.Commerce” />

 <Cart type="Sitecore.Commerce.Entities.Carts.Cart, Sitecore.Commerce” />

 <CartAdjustment type="Sitecore.Commerce.Entities.Carts.CartAdjustment,

Sitecore.Commerce” />

 <CartLine type="Sitecore.Commerce.Entities.Carts.CartLine, Sitecore.Commerce” />

 <CartProduct type="Sitecore.Commerce.Entities.Carts.CartProduct, Sitecore.Commerce”

/>

 <CartOption type="Sitecore.Commerce.Entities.Carts.CartOption, Sitecore.Commerce”

/>

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 16 of 61

 </commerce.Entities>

In order to use a custom entity it is necessary to perform the following two steps:

 1. Create a new Entity class

 2. Register the custom Entity class in the configuration section <commerce.Entities>.

To do this, change type attribute value of “entityFactory” element to the custom EntityFactory

type.

2.1.9 EaPlanProvider

This class is used to figure out an engagement plan name based on the current store name in
combination with and engagement plan name or state name. It is possible to implement your own version

of this by implementing IEaPlanProvider and registering that class name in the eaPlanProvider

section of the Sitecore.Commerce.config.

2.1.10 ContactFactory

This class is used to get the id of the current runtime user. The default implementation is dependent on
Sitecore Analytics for tracking; if this does not suit your needs you can change it by extendi ng the

ContactFactory class and overriding the GetContact method.

Below is a copy of how the default instance works. Once you get the id of your user from the ECS you

should identify the Tracker.Current.Contact with that id (using the

Tracker.Current.Session.Identify()method),and from that point on this id will be returned by

the ContactFactory. If no id is available from the external user then the id created by Sitecore

Analytics will be used instead.

public virtual string GetVisitor()

{

 var user = Tracker.Current.Contact.Identifiers.Identifier;

 if (string.IsNullOrEmpty(user))

 {

 user = Tracker.Current.Contact.ContactId.ToString();

 }

 return user;

}

2.1.11 ItemClassificationService

This is a simple class that is used to help determine what type somethin g is, the current version is used to
verify if an item is a product, if a template is a product template, and to get the product id from an item.

2.1.12 CommerceContext

The CommerceContext class is used to determine the current product and inventory location that is the
focus of the site. This class is currently only used by the inventory rule conditions when no stock location

or product id is provided to calculate against.

2.1.13 ServiceProviders

Each service layer has its own interface which can be customized, these providers contain the service
methods for interacting with the appropriate sub system . All service providers should inherit from

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 17 of 61

ServiceProvider and it is recommended to have a generics version of the class in which each service

method is generics based.

Sample service method:

public virtual GetCartsResult GetCarts([NotNull] GetCartsRequest request)

{

 return this.RunPipeline<GetCartsRequest, GetCartsResult>(PipelineName.GetCarts, request);

}

Generics extension method example:

public static TGetCartsResult GetCarts<TGetCartsRequest, TGetCartsResult>([NotNull] this

CartServiceProvider cartProvider, [NotNull] TGetCartsRequest request)

 where TGetCartsRequest : GetCartsRequest

 where TGetCartsResult : GetCartsResult, new()

{

 return cartProvider.RunPipeline<GetCartsRequest, TGetCartsResult>(PipelineName.GetCarts,

request);

}

If an existing service provider required a new service method, consider extend ing the service provider
and adding the new method instead of creating a whole new service provider. The various sub systems

and their service providers are listed below.

Shopping Cart

Sitecore.Commerce.Services.Carts.CartServiceProvider

Orders

Sitecore.Commerce.Services.Orders.OrderServiceProvider

Pricing

Sitecore.Commerce.Services.Prices.PricingServiceProvider

Product Synchronization

Sitecore.Commerce.Services.Products.ProductSynchronizationProvider

Customers and Users

Sitecore.Commerce.Services.Customers.CustomerServiceProvider

Inventory

Sitecore.Commerce.Services.Inventory.InventoryServiceProvider

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 18 of 61

2.2 Service Layer Specifics

Each service layer in Commerce Connect follows the same design pattern, in the sections below the
specific properties and configuration options unique to each service layer are described.

2.2.1 Cart Service Layer

Different ways to work with an ECS

The cart integration can be done in four different ways:

1. The cart is only passed to the external commerce system when submitting an order.
If the integration is made against an ERP system, shopping cart functionality is typically not

provided and needs to be handled elsewhere, in this case in Commerce Connect.

In this case the cart related pipelines only contain the default Commerce Connect provided

processors. This is very easy to setup as no work is involved in creating the integration other than

adding a pipeline in the Orders service layer, which will take the shopping cart as input for

creating an order.

2. The cart is only ”saved” in the external commerce system after each change (OnSave)

This option will minimize the number of calls to the external commerce system and thereby

improve performance. It will however be more difficult for the external commerce system t o act

upon updates made to the cart in Sitecore, l ike making changes to cart l ines when products are

added to the cart e.g.:

 There might be a discount that needs to be added due to a sale or due to adding a

bundled product or a certain combination of products triggering a discount.

 There might be an additional “free” product that needs to be added due to a sale.

3. All cart actions are forwarded to the external commerce system (AddLine, UpdateCart, etc.).

This option provides the most flexibil ity for advanced scenarios as explained in #2, but it also

makes more calls to the external commerce system decreasing performance.

4. Cart data is only persisted in the external commerce system. In order to do so, the Commerce

Connect specific processors LoadCartFromEAState (LoadCart), SaveCartToEAState

(SaveCart), FindCartInEAState & RunResumeCart (CreateOrResumeCart),

DeleteCartFromEaState (deleteCart) and BuildQuery + ExecuteQuery

(GetCarts) must be removed from the pipelines mentioned in parentheses.

The default is option number 2.

Configuration

All configuration for the cart subsystem can be found in the Sitecore.Commerce.Carts.config fi le. Here
you will find all details for the entities, pipelines, and repositories used by the cart system.

Entities

The default cart entities for Commerce Connect only assume some of the basic cart information that will
be used across all commerce systems, it is expected that you will need to extend these entities. When

you need to extend any of the default entities you can achieve this by c reating a new class that inherits

from the appropriate type, and then patching the appropriate entity under <commerce.Entities> in the

Sitecore.Commerce.Carts.config fi le. You can read more about individual entities in the Developer Guide.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 19 of 61

Storing a copy of the cart locally

Commerce Connect gives you the option of storing a copy of your cart locally to help reduce round trips to

your ECS or implement functionality that the destination ECS might now support. You are not required to

use this functionality, and you will not miss out on any functionality by not using it.

If you are not going to make use of this functionality the Commerce Connect specific processors

LoadCartFromEAState (LoadCart), SaveCartToEAState (SaveCart), FindCartInEAState

& RunResumeCart (CreateOrResumeCart), DeleteCartFromEaState (deleteCart) and

BuildQuery + ExecuteQuery (GetCarts) must be removed from the pipelines mentioned in
parentheses.

To store the data locally you must create a class that implements

Sitecore.Commerce.Data.Carts.ICartRepository and patch the eaStateCartRepository

element in the Sitecore.Commerce.Carts.config with the new full class name. Commerce Connect ships

with two sample repositories called EaStateSqlBasedCartRepository and

EaStateCartRepository, these are only sample repositories and should not be used in a production

scenario.

Abandoned Cart Engagement Automation plan

The plan is provided as a branch template and multiple instances can be created. There should be one

instance per shop. The default plan can be customized wi th different or more states as is needed.

To make the plan work, two Sitecore Commerce specific conditions and an action has been provided:

 Condition: Has Empty Cart?

The condition will retrieve the cart of the current visitor and check if it’s empty or n ot, e.g. if there

are any cart l ines in it. By default this will on work with one cart per user.

 Condition: Has Provided E-mail?
The condition will retrieve an e-mail for the current visitor if they have one.

 Action: Set Cart Status

The status of the cart itself is also set to “abandoned”. It is reflected when searching for carts

across all visitors using the GetCarts method on the service layer.

The plan also uses the standard Send E-Mail Message action, which is provided with CEP, to send out
the notification e-mail informing the user about the abandoned cart an encouraging him/her to return and

complete the purchase.

2.2.2 Orders Service Layer

The orders service layer is essentially an extension of the cart service layer.

Configuration

All configuration for the order subsystem can be found in the Sitecore.Commerce.Orders.config fi le. Here

you will find all details for the entities, pipelines, and repositories used by the cart system.

Entities

For the most part the default order entities for Commerce Connect are the same classes used by cart with

the exception of Order and OrderHeader, it is expected that you will need to extend these entities. The

Order entity simply extends Cart and adds an OrderId property, and OrderHeader extends from

CartBase which simple services as a class with some basic info about an Order. When you need to

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 20 of 61

extend any of the default entities you can achieve this by creating a new class that inherits from the

appropriate type, and then patching the appropriate entity under <commerce.Entities> in the

Sitecore.Commerce.Orders.config fi le. You can read more about individual entities in the Developer

Guide.

New Order Placed Engagement Automation Plan

The plan is provided as a branch template and multiple instances can be created. There should be one
instance per shop. The default plan only comes with an initial state and can be customized with different

or more states as is needed.

Pipelines

The order layer only ships with four pipelines submitVisitorOrder, getVisitorOrder,

getVisitorOrders, and visitorCancelOrder. By default all that these pipelines will do is trigger a

goal, except for submitVisitorOrder, which will also add the order to an Engagement Automation

Plan. Each of these pipelines must be fi l led in with an appropriate processor that knows how to

communicate to an ECS. For more details on the requests and results used by these pipelines please

check out the Developer Guide.

2.2.3 Inventory Service Layer

The inventory service layer provides read-only integration with inventory / stock information from an ECS.
However, this service layer can be extended to support read -write integration if desired.

Pipelines

The pipelines of the inventory service layer can be split into four categories:

1. Runtime Integration
a. commerce.inventory.getStockInformation

b. commerce.inventory.getPreOrderableInformation

c. commerce.inventory.getBackOrderableInformation

2. Search Integration

a. commerce.inventory.stockStatusForIndexing

3. Event Raising

a. commerce.inventory.visitedProductStockStatus

b. commerce.inventory.productsAreBackInStock

c. commerce.carts.addCartLines

4. Products Back In Stock Engagement Plan

a. commerce.inventory.visitorSignUpForStockNotification

b. commerce.inventory.removeVisitorFromStockNotification
c. commerce.inventory.getBackInStockInformation

Of these pipelines, only the following require integration with the ECS:

 commerce.inventory.getStockInformation

 commerce.inventory.stockStatusForIndexing

 commerce.inventory.getPreOrderableInformation

 commerce.inventory.getBackOrderableInformation

 commerce.inventory.getBackInStockInformation

Extending the other pipelines is purely optional.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 21 of 61

Configuration

All configuration for the inventory service layer can be found in the Sitecore.Commerce.Inventory.config

fi le. Here you will find all details for the entities, pipelines, and repositories used by the inventory system.

It is highly recommend that you do not modify this fi le when adding your ECS connector components to

the pipelines, overriding entity definitions, etc. Instead, use Sitecore configuration patching, and include

all of your ECS configuration in a separate fi le named {ECSName}.Connectors.Inventory.config.

Entities

In the stock inventory system, there is no inheritance hierarchy for entitie s, and all of the connect

pipelines treat them as read-only entities. If you wish to support updating stock information through the

inventory system, you will need to extend the system with your own pipelines and service provider

methods.

StockStatus and StockDetailsLevel Entities

The StockStatus and StockDetailsLevel entities are slightly different from traditional entities, in

that they are intended to represent enumeration values. StockStatus represents a standard

enumeration, and StockDetailsLevel represents a flags enumeration. If either of these entities need

to be extended for an ECS, the extended entities should also expose constants / read -only properties that

represent the possible values for the entity. For example, if extending StockStatus to contain a new

Downloadable value, then the extended EcsStockStatus entity should expose a static readonly

field that represents the Downloadable value (i.e. public static StockStatus Downloadable

= new EcsStockStatus(5, “Downloadable);)

The InventoryProductBuilder

The InventoryProductBuilder is a helper class used in the inventory system to build

InventoryProduct entities based on the current site context, compare InventoryProduct entities,

etc. If you extend the InventoryProduct entity, this class will also need to be extended. Configuration

for the InventoryProductBuilder is located in configuration at sitecore/inventoryProductBuilder

The InventoryAutomaionProvider

The InventoryAutomationProvider is a helper class used by the conditions an actions in the

“Products Back in Stock” engagement automation plan to access automation state data as strongly -typed

classes. Automation state data in the inventory system is stored as JSON serialized strings. The

InventoryAutomationProvider is responsible for serializing and deserializing information stored in
the automation state data row.

Products Back in Stock Engagement Automation Plan

The plan is provided as a branch template and multiple instances can be created. There should be one
instance per shop. The default plan can be customized with different or more states as is needed. Its

purpose is to notify customers by email when a product they are interested in is back in stock and

available for order.

This automation plan maintains state data that i s serialized in JSON format. The following values are
used to track customer ‘back in stock’ notification requests, all of which represent a list of

StockNotificationRequest objects:

 commerce.productNotifications

Contains the list of valid notification requests that the customer is interested in.

 commerce.expiredNotifications
Contains the list of notification requests that have expired.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 22 of 61

 commerce.backInStockProducts

Contains the list of products that are back in stock.

To support this automation plan, two new conditions and two actions have been created.

 Action: Remove Expired Back In Stock Notifications

This action will update the automation plan state data, and remove ‘back in stock’ notification

requests that have past their interest date. The default interest date is 180 days after the day the

customer requested to be notified when a product is back in stock.

 Action: Send Back In Stock Notification Email
This action sends email to the customers when a product they are interested has become back in

stock. This action should be customized for each shop to contain the correct email address and

email body branding.

 Condition: Are Products Back In Stock Condition

This condition checks if any products that customers are interested in have become back in

stock. If at least one product is back in stock, this condition will evaluate as true.

 Condition: Has List Of Visitor Notifications Expired Condition

This condition checks if the customer stil l has any valid ‘back in stock’ notification requests. If at

least one ‘back in stock’ notification request exists that has not expired, this condition will

evaluate to false.

All of these conditions and actions rely on the InventoryAutomationProvider to access automation
state data and perform notification compari sons. So, customizing the conditions and actions directly

should not be necessary. Instead, the InventoryAutomationProvider should be updated to extend

any functionality needed in this automation plan.

Extending the InventoryProduct Entity

The InventoryProduct is used to uniquely identify a product / stock information in the ECS. If the

default InventoryProduct is not sufficient to identify stock information, you will need to extend this

entity, as well as a few provider classes in the inventory system, using the following steps:

1. Create an EcsInventoryProduct class that derives from InventoryProduct that contains
the information required to identify stock information in your ECS

2. Create an EcsCommerceContext that derives from CommerceContextBase that exposes

properties that represent the additional information required to identify stock information in your

ECS. It will be the responsibil ity of the client site / application to set these properties based on
client state.

3. Create an EcsInventoryProductBuilder class that derives from

InventoryProductBuilder, and override all methods of the base class to properly handle

your EcsInventoryProduct. In particular, you will need to use the new

EcsCommerceContext inside CreateInventoryProduct() to populate the additional

properties of you EcsInventoryProduct. For example:

var ecsProductInfo = ((EcsCommerceContext)this.CommerceContext).EcsProductInfo;

4. Create an EcsInventoryAutomationProvider class that derives from

InventoryAutomationProvider, and override the GetProductNotifications,

GetExpiredNotifications, and GetProductsBackInStock methods. These methods will

need to return an EcsInventoryProduct for the StockNotificationRequest.Product

property. Automation state data in the inventory system is stored as JSON seri alized strings, so
this will usually require some custom deserialization code.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 23 of 61

5. Register your EcsInventoryProduct entity at sitecore/commerce.Entities/InventoryProduct

6. Register your EcsCommmerceContext at sitecore/commerceContext

7. Register your EcsInventoryProductBuilder at sitecore/inventoryProductBuilder

8. Register your EcsInventoryAutomationProvider at sitecore/inventoryAutomationProvider

2.2.4 Customers and Users

What is the difference between a User and a Customer

Both of these entities are consumers of your ECS webshop. The User (CommerceUser) account is
primarily for authentication purposes and exposing the user to DMS. T he customer

(CommerceCustomer) account is for representing the customer in the ECS who will receive and pay for

the submitted orders. In simple B2C scenarios the CommerceUser and the CommerceCustomer

represent two aspects of the customer, where in B2B scenarios the CommerceUser represents the

person acting on behalf of the customer, which typically represents an organization or company.

There is a many-to-many relationship between customers and users and there could be customers
without users (anonymous checkout, without registration for example), but normally users would not be

without customers.

Different ways to work with an ECS

There are multiple scenarios to use Connect to work with an ECS for customers and users.

Some usage examples of the domain model are:

 To pass customer and user information between the external commerce system and Sitecore

 To set and/or get customer information during checkout

 To register accounts for new users

 To authenticate, e.g. login or logout registered users

 To enter a user into an EA plan when creating a user account and trigger goals when logging in

You can read more about the domain model for customers and users in the Connect Developer Guide.

Configuration

All configuration for the customer subsystem can be found in the Sitecore.Commerce.Customers.config

fi le. Here you will find all details for the entities, pipelines, and repositories used by the customer and user

system.

Entities

The default customer entities for Commerce Connect only assume some of the basic customer and user

information that will be used across all commerce systems, it is expected that you will need to extend

these entities.

There are five (5) entities defined in the Connect system for customers and users, all of which you may
choose to extend to suite your needs.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 24 of 61

Co mme rce Cu sto me r

The concept of a customer is determined by the integrated commerce system and the e -shop solution. In
B2C solutions, the customer typically represents a person whereas in B2B scenarios a customer typically

represents a company.

The CommerceCustomer entity will always be extended to include custom information particular to the
ECS.

Co mme rce Use r

The CommerceUser class is responsible for representing a user account. A user resembles a visitor of a
webshop (website) who has identified him- or herself explicitly by creating a login account by which the

person can be (re-)authorized.

The CommerceUser entity can be extended to include custom information particular to the ECS, but the
default implementation will work if users are stored in Sitecore only for authentication purposes.

Cu sto me rPa rty

CustomerParty is used to represent the type and 0-to-many relationship between the customer and a

list of parties, where parties are of type Party.

Cu sto me rPa rtyTyp e

CommercePartyType is used to indicate the type of relationship between the customer and party.

The class is introduced as an extensible enum. In order to extend and customize the

CustomerPartyTypes options. Connect has two different party types, AccountingParty and

BuyerParty.

Pa rty

Party is a shared entity between carts service layer and customer and users service layer. This entity
stores party information for example: address information.

When you need to extend any of these default entities you can achieve this by creating a new class that
inherits from the appropriate type, and then patching the appropriate entity under

<commerce.Entities> in the Sitecore.Commerce.Customers.config fi le.

You can read more about individual entities in the Developer Guide .

Pipelines

There are numerous pipelines for Customers and Users allow most basic functionality.

Some example of the pipelines allow for:

 Creation of Customer and Users via CreateCustomer and CreateUser.

 Updating of Customers and Users via UpdateCustomer and UpdateUser.

 Deletions via DeleteCustomer and DeleteUser.

 Associating Customer to Users via AddCustomers and AddUsers.

 Adding of Party information via AddParties.

You can read more about the customer and user pipelines in the Developer Guide.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 25 of 61

Chapter 3 Product Synchronization

Sitecore Connect contains a service layer for synchronizing product data between Sitecore and one or

more external commerce systems.

Having access to product data is essential for any shop, but using the product synchronization layer is
optional with Connect. By design, the service layers work independently and all the other service layers

only care about a product ID, which is typically provided in parameters.

Note
For more information about benefits and drawbacks for using product synchronization compared to other

approaches like use of data providers, see the Connect Overview document.

Note
For a description of the service layer methods, pipelines and domain objects, see the Sitecore Commerce

Connect Developer Guide

The following sections describe:

1. The basics of product synchronization

2. The Connect product data model

3. The item data structure

4. The object domain model

5. A number of examples of how to implement and customize the default implementation

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 26 of 61

3.1 The basics of product synchronization

There are a couple of different ways to synchronize one or more products ranging from explicit to implicit
specification of the products to synchronize:

 Synchronize All Products

The service method SynchronizeProducts synchronizes all products and related product

repositories (a.k.a. artifacts), that needs to be synchronized. A part of the logic, retrieves a list of

updated products from the external commerce system and a list from Sitecore and compares

them to implicitly determine which products to synchronize and which to delete.

After determining which products to synchronize, due to being newly added, updated or deleted,

the next method SynchronizeProductList is called, specifying the list of products to synchronize.

Before calling Synchronize Product List, all the related product repositories are synchronized.

 Synchronize Product List

The service method SynchronizeProductList accepts a list of product IDs which it iterates over

and calls the Synchronize Product method.

No related product repositories are synchronized as part of this, but are assumed to be up -2-date.

 Synchronize Product

The service method SynchronizeProduct accepts a single product ID for which the data is

synchronized.

No related product repositories are synchronized as part of this, but are assumed to be up -2-date.

 Synchronize Artifacts
The related product repositories like Manufacturers, Product Types, Classifica tions (categories)

and global specifications are referred to as product artifacts.

The service method SynchronizeArtifacts will synchronize all the repositories separately.

While synchronizing all or a list of products, a number of Sitecore Disablers are t emporarily activated to
speed up performance, l ike EventDisabler, SecurityDisabler etc.

Note
The item IDs generated in Sitecore, for the product data in the external system, are based on a direct

mapping of external IDs to Sitecore Item IDs. That means the same specific item ID is always generated

for a specific external ID. The implication is, that product data can be synchronized, even if the related

product repositories are not up to date. When the related product data is synchronized the connection i s

automatically established because the Sitecore item ID was already known and configured. For more

information see section

3.1.1 2-way synchronization

The synchronization provided with Connect is designed to work in both directions. However, the most

common scenario is to synchronize only one way, from the external commerce system to Sitecore
content.

The logic that determines whether an entity is updated in the ECS, CMS, or both is based on a Direction

parameter and the configured strategy. Each synchronization method takes an optional Direction

parameter. If not provided the default direction value is Direction.Inbound, which means the product data

is taken from the ECS and imported into CMS. The possible Direction values are:

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 27 of 61

 Direction.Inbound, e.g. one-way synchronization from ECS to CMS. This is the default value.

 Direction.Outbound, e.g. one-way synchronization from CMS->ECS.

 Direction.Both, e.g. 2-way synchronization based on the configured synchronization strategy

The default synchronization strategy is based on timestamps for when the entity was last updated and the

last one (newest date and time) wins, meaning if the entity was last updated in t he external system, then
it gets overwritten in Sitecore and vice versa. Only when specifying 2 -way synchronize with Direction.Both

will the synchronization strategy be evaluated to determine which way data flows. The strategy is

executed per product and all its constituent entities. For more information on customizing the

synchronization strategy, see section 3.7 How to Create a Custom Synchronization Strategy

3.1.2 Pipeline pattern

Each type of item that makes of the product domain model is managed individually by following the divide
and conquer strategy. As with all other service layers in Connect, the logic is implemented using

pipelines. It means that there are one or more pipelines associated with every product entity in the model,

where the entity can be product, manufacturer, division, classification etc.

Connect uses a pattern similar to the Bridge Design Pattern for the processors in the pipelines for each
type of entity. The product domain model serves as the data abstraction that hides its implementation in

the ECS as well as in Sitecore. Each entity is read from both the ECS and Sitecore.

A comparison of the values between identical instances is executed and the result is written back to both
the ECS and Sitecore. This means that each pipeline has the same pattern of processors for each entity,

where the entity can be product, manufacturer, division, or classification.

The two-way synchronization takes place in the following order:

1. The entity is read from the ECS.

Naming convention: “Read[TypeOfEntity]FromSC”

2. The entity is read entity from the CMS.

Naming convention: “Read[TypeOfEntity]FromECS”

3. The entities are compared and the differences are resolv ed.

Naming convention: “Resolve [TypeOfEntity]Changes”

4. The results are written to the ECS.

Naming convention: “Save[TypeOfEntity]FromECS”

5. The results are written to the CMS.

Naming convention: “Save[T7ypeOfEntity]FromSC”

When implementing integration with an external system, it is processors number 1 and 4, which are
relevant to implement. The others come with Connect. There needs to be a custom version of processor

number 3, but a base processor is provided which provides most of the logic needed.

Depending on the value of the Direction parameter, some of the previously listed processors skip
execution. For example, if the Direction parameter is set to inbound (ECS->CMS), there is no need to

read the entity from CMS or write it back to the ECS.

The following snippet shows the default configuration for synchronizing the main product item (a.k.a.
ProductEntity). The basic pattern handles the cases of creating and updating. For product, an additional

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 28 of 61

processor is injected to delete a product if it no longer exists in the external commerce system and must

be removed from content.

 <commerce.synchronizeProducts.synchronizeProductEntity>

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.ReadProductFromSitecore,

Sitecore.Commerce">

 <param desc="productRepository" ref="productRepository" />

 </processor>

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.ReadExternalCommerceSystemPro

duct, Sitecore.Commerce" />

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.ResolveProductChanges,

Sitecore.Commerce">

 <param desc="synchronizationStrategy" ref="synchronizationStrategy" />

 </processor>

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.DeleteProductFromSitecore,

Sitecore.Commerce">

 <param desc="productRepository" ref="productRepository" />

 <param ref="entityFactory" />

 </processor>

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.SaveProductToExternalCommerce

System, Sitecore.Commerce" />

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.SaveProductToSitecore,

Sitecore.Commerce" >

 <param desc="productRepository" ref="productRepository" />

 <param ref="entityFactory" />

 </processor>

 </commerce.synchronizeProducts.synchronizeProductEntity>

Figure 1 il lustrates how the main pipeline SynchronizeProducts are executing other pipelines internally to

do a full synchronization.

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 29 of 61

Figure 1: Call hierarchy between pipelines

Sitecore Commerce Connect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Pipelines and naming convention

Pipelines are generally split into two types:

 Pipelines that operate on related product repositories, separate from the actual product

repository.

These separate repositories are used as references from the product repository. There are

repositories for Manufacturers, Classifications, Types, Divisions, Resources and specifications.

The pipeline names are prefixed with “Synchronize”. An example is SynchronizeManufacturers,

which is responsible for synchronizing all manufacturers.

 Pipelines that operate on individual products and synchronize references from products to the
separate repositories.

The pipeline names are prefixed with “SynchronizeProduct ”, having the word product added to

signal that they are dealing with individual products as opposed to entire repositories. An example

is SynchronizeProductManufacturers, which is responsible for synchronizing the

connections/references between a specific product and its related manufacturers stored in the

separate Manufacturers repository.

Processors that begins with the word Run are responsible for calling a separate pipeline and transfer the

needed parameters. An example is RunSynchronizeManufacturers, which executes the

SynchronizeManufacturers pipeline.

3.1.3 Integrating with Connect

Integrating products with Sitecore Commerce Connect via product synchronization requires:

Potentially customizing the product domain model, although the default model will cove r most scenarios
and carry the needed information for presentation purposes. For more information on customizing the

domain model, see section 3.4, The Object Domain Model

The object diagram below visualizes the object domain model. For more information, see the Sitecore
Commerce Connect Developer Guide.

There is a one to one correspondence between the product item templates and the objects.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 31 of 61

How to Implement a Custom Product Entity. The domain model consists of a list of Sitecore product
template and corresponding object types.

1. Creating a custom processor for each pipeline that reads data externally and stores it in an
instance of the corresponding domain model object type, for which the pipeline is responsible.

2. If the synchronization needs to go both ways, two additional processor must be create d for each

pipeline

o A processor which stores the product data externally. The product data will be given in a

an instance of the corresponding domain model object type, for which the pipeline is

responsible

o A processor, which resolves the differences and determines the resulting output. For

more information, see section 3.7 How to Create a Custom Synchronization Strategy.

Note
When reading data in the external system and populating an instance of a domain model entity (step #2),

i t’s important to provide unique names for entities of the same type so that it will result in unique item

names in Sitecore. If not, it cannot be guaranteed that the items can be accessed. An example is

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 32 of 61

resources, where two images with identical names for the same produ ct, will result in only one of them

being shown on the website, because Sitecore always picks the first item with a given name

3.1.4 Repository design pattern

Each Connect processor that writes data to Sitecore content is based on the Repository design pattern

and has an associated configuration entry in the Sitecore.Commerce.Products.config fi le.

In the following snippet, the default configuration for the ManufacturerRepository is displayed.

 <manufacturerRepository type="Sitecore.Commerce.Data.Products.ManufacturerRepository,

Sitecore.Commerce" singleInstance="true">

 <path ref="paths/manufacturers" />

 <template>{8ECDC0A6-3A85-4F89-8F49-8A53AA75595E}</template>

 <prefix>Manufacturer_</prefix>

 </manufacturerRepository>

All repository configuration have the following in common

 A name and a type attribute that refers to the implementation. The name is the element name and

the naming scheme is: [entity name in singular] + “Repository”, l ike “manufacturerRepository”.

 A <path> parameter element which refers to the main <paths> element, to specify where the root

of the repository is located.

 A <template> parameter element that contains the ID of the template that the repository operates
on. The template is used when creating new instances of the given item type.

 A <prefix> parameter element containing an arbitrary but fixed prefix, which is used as input to

the IDGenerator along with external ID, to ensure the outcome is a unique GUID ID, which can be

used as a unique item ID. For more information see section 3.8 How to Implement a Custom ID

Generator.

There is a special kind of repository types, whose names start with “product”, that doesn’t actually store
data in a separate repository, but augment the main product entity with references to the separate

repositories. An example is productManufacturerRepository that has the responsibil ity of managing the

references between the product item and the related manufacturer items. The configuration for

productManufacturerRepository is shown below.

Instead of a template and path element, it has a couple of <param> elements, specifying the name of the
field on the product item that holds the references (e.g. item IDs) to the related manufacturers. As these

types of repositories needs to generate the right item IDs, they need to know the same prefix as was used

in the configuration for the <manufacturerRepository>.

 <productManufacturerRepository

type="Sitecore.Commerce.Data.Products.ProductFieldRepository, Sitecore.Commerce"

singleInstance="true">

 <param desc="productFieldName">Manufacturer</param>

 <param desc="productPrefix">Product_</param>

 <path ref="paths/manufacturers" />

 <prefix>Manufacturer_</prefix>

 </productManufacturerRepository>

Note
Apart from being used in the pipelines to store entities in Sitecore, the repositories can be used to obtain

an object instance of the given type by providing an ID.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 33 of 61

All repositories provides a method that takes an ID as input and returns an instance of the given entity

type:

public virtual TEntity Get(string entityKey)

Retrieving a specific product looks like this:

var product = this.productRepository.Get("external id");

3.1.5 ID Mapping

By design, the remote product repository is always regarded as the main repository, which by default

owns the products. That makes the ID of the products and artifacts in the external system the primary

key.

In Sitecore, the IDs of the corresponding items for products and artifacts are generated by Connect
instead of relying on the default Sitecore implementation that automatically generates a new GUID for

each new item created.

By using a hash algorithm, it is possible to generate a direct mapping between the IDs coming from the
external system and the item IDs in Sitecore. It has the following benefits:

 No need for mapping tables taking up space.

 It becomes very fast to get the ID of the corresponding item.

 There is no need for searching for the items in Sitecore if the external ID is provided.

The default implementation is based on the MD5 hash algorithm and has the following format:

Item.ID = MD5.ComputeHash(Prefix + ExternalID);

For more information on creating a custom ID mapping implementation, see se ction 3.8 How to

Implement a Custom ID Generator

3.1.6 Indexing

When Connect is installed the default index is patched to exclude all product data and a separate product

index is created, which contains extended product data.

While synchronizing all products or a list of products, the indexing is stopped. After synchronization
finishes the indexes are rebuilt. This is done for performance reasons. The configuration snippet below

shows the default configuration of the SynchronizeProductList pipeline containing the processors related

to indexing.

<commerce.synchronizeProducts.synchronizeProductList>

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.PauseSearchIndexing,

Sitecore.Commerce" />

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.SynchronizeProductList,

Sitecore.Commerce" />

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.ResumeSearchIndexing,

Sitecore.Commerce" />

 <processor

type="Sitecore.Commerce.Pipelines.Products.SynchronizeProductList.RebuildSearchIndexes,

Sitecore.Commerce" />

</commerce.synchronizeProducts.synchronizeProductList>

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 34 of 61

In the Sitecore.Commerce.Products.Config fi le, the setting ProductSynchronization.ProductIndexes
contains a comma separated list of index names that are stopped and re-started during product

synchronization
 <!-- PRODUCT INDEXES.

 The indexes used to store synchronized products.
 Can be stopped, resumed and rebuild automatically during product synchronization.
 -->

 <setting name="ProductSynchronization.ProductIndexes" value="sitecore_master_index,

commerce_products_master_index" />

Note
If additional indexes are created, the setting should be updated to include the name of the indexes. If not,

indexing will continue during synchronization resulting in performance degradation

Note
If new or custom product templates are introduced, both the DefaultIndexConfiguration and the Product

index configurations must be updated. For more information, see the following sections.

The default index

By design, the default master and web indexes are configured, not to include the items stored in the
product repositories.. The default index configuration is patched with an Exclude section with an entry for

each product template:

<exclude hint="list:ExcludeTemplate">

<ProductRepositoryTemplateId>{F599BF48-D6FE-40DC-9F78-

CF2D56BFB657}</ProductRepositoryTemplateId>

 <ProductTemplateId>{47D1A39E-3B4B-4428-A9F8-B446256C9581}</ProductTemplateId>

…

</exclude>

For the full configuration see the configuration fi le
“Sitecore.Commerce.Products.Lucene.DefaultIndexConfiguration.config“

The product index

Connect comes with its own product index for both the master and the web database. The index serves
several purposes:

 To separate content from data in two separate indexes

The product index is used, when searching the product repository bucket from within the Content

Editor. This is achieved by patching the getContextIndex pipeline:
<contentSearch.getContextIndex>

<processor type="Sitecore.Commerce.Pipelines.ContentIndex.CustomIndex.FetchCustomIndex,

Sitecore.Commerce"
patch:before="processor[@type='Sitecore.ContentSearch.Pipelines.GetContextIndex.FetchIndex

, Sitecore.ContentSearch']"/>

</contentSearch.getContextIndex>

 To include extended product data.

A pipeline “commerce.inventory.stockStatusForIndexing” reads inventory data per product
from the external commerce system and populates the index. Computed fields are used to

include the inventory data. The configuration can be found in fi le

Sitecore.Commerce.Products.Lucene.Index.Common.config .

The table below provides an example of the product index extended with four fields:

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 35 of 61

1. In-Stock

Contains a list of locations where the product is in stock

2. Out-Of-Stock

Contains a list of locations where the product is out of stock

3. Location

Contains a list of locations where the product is orderable from

4. Pre-Orderable

Contains a Boolean value indicating whether the product is pre-orderable or not

.

Product ID

(not variant)

Size Color In-Stock Out-Of-Stock Location Pre-orderable

Aw123-04 S, M, L, XL R, B, G, O Central Store,

Store1, Store2

Store3 Central

Store 1,

Store 2,

Store 3

Yes

The product index is defined in the fi le “Sitecore.Commerce.Products.Lucene.Index.Master.config ”. A
similar configuration fi le is defined for the Web index.

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <contentSearch>

 <configuration type="Sitecore.ContentSearch.ContentSearchConfiguration,

Sitecore.ContentSearch">

 <indexes hint="list:AddIndex">

 <index id="commerce_products_master_index"

type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex, Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <!-- This initializes index property store. Id has to be set to the index id

-->

 <param desc="propertyStore" ref="contentSearch/databasePropertyStore"

param1="$(id)" />

 <configuration

ref="contentSearch/indexConfigurations/defaultLuceneIndexConfiguration"/>

 <strategies hint="list:AddStrategy">

 <!-- NOTE: order of these is controls the execution order -->

 <strategy ref="contentSearch/indexUpdateStrategies/syncMaster" />

 </strategies>

 <commitPolicyExecutor type="Sitecore.ContentSearch.CommitPolicyExecutor,

Sitecore.ContentSearch">

 <policies hint="list:AddCommitPolicy">

 <policy type="Sitecore.ContentSearch.TimeIntervalCommitPolicy,

Sitecore.ContentSearch" />

 </policies>

 </commitPolicyExecutor>

 <locations hint="list:AddCrawler">

 <crawler type="Sitecore.Commerce.Search.ProductItemCrawler,

Sitecore.Commerce">

 <Database>master</Database>

 <Root>/sitecore/content/Product Repository</Root>

 </crawler>

 </locations>

 </index>

 </indexes>

 </configuration>

 </contentSearch>

 </sitecore>

</configuration>

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 36 of 61

Note
It is assumed that the product repository is located under the path “/sitecore/content/Product Repository”.

If this is not the case, the <Root> element for the crawler must be updated to reflect the actual location

A custom crawler is used for the product index to include the items based on the product templates

defined in the <includeTemplates> section of the configuration fi le “Sitecore.Commerce.Products.config”.

The list of product templates defined in this section is an exact match of the exclude templates section for

the DefaultIndexConfiguration. If a custom product template is introduced, then the index configuration

must be updated.

<includeTemplates>

 <ProductRepositoryTemplateId>{F599BF48-D6FE-40DC-9F78-

CF2D56BFB657}</ProductRepositoryTemplateId>

 <ProductTemplateId>{47D1A39E-3B4B-4428-A9F8-B446256C9581}</ProductTemplateId>

…

</includeTemplates>

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 37 of 61

3.2 The Connect product data model

The rationale behind the architecture of the Connect product data model are:

 To have a product data model that fulfi l ls the identified end -user scenarios.

 To have a single common product data model no matter which ECS is integrated wit h.

o For solution developers it will be the same model across different solutions.

o For UI components developers, the components will be easier to buil d and maintain if the
data model remains the same across external commerce systems

Product data is complex and it’s important to realize that in Connect there is not a one-2-one mapping
between a product and a single item in Sitecore - in the same way that product data in the ECS is not

stored in a single SQL table.

Note
Data for a single product consists of multiple Sitecore items. In order not to confuse matters with CMS

items, they are referred to as Entities in this document and in Connect.

In Connect, a product data model is defined, so that it’s possible to:

 Provide a solid base for typical must-have e-com scenarios.

The main reason for pulling in product data in to Sitecore is to augment it and present it on
different shops and channels, e.g. media, web, mobile, print

The product data must be normalized in order to form a good and strong foundation for building

upon and to fulfi l l the scenarios

Data for a product is stored as a composite structure. There is a main content item based on a
template Product representing a product with only the shared generic fields like ID, Name,

Description, Type etc. Below the product item is sub-tree structure with specifications, relations

and resources. In addition, there are several related repositories that a product l inks to, l ike

Manufacturer, product type etc.

 Avoid redundant product data

The more redundant data, the more data needs to be synchronized, updated manually in SC and
maintained

If all data for a single product were forced to be stored in one Sitecore item, there would be a lot

of redundant data stored amongst all the product items, which means far t oo much data is being

stored and it becomes a nightmare to maintain in Sitecore.

Instead separate repositories are used for shared data like manufacturer information, divisions
and specification values and referred to by way of l inking. It’s similar to the way normalized

product data would be stored in separate tables in a SQL databases and references with foreign

keys.

 Minimize product data to synchronize

By avoiding redundant data, the amount of data to synchronize will be minimized

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 38 of 61

Also, not all product data is needed from the ECS. Only product data needed to fulfi l l the
scenarios described in the following sections should be synchronized and stored in Sitecore.

 Avoid most typical custom model implementation problems

By splitting product data into a composite product structure and place data into separate

repositories the most typical implementation problems can be avoided:

• Flat model

In a flat model a single item represents a product. Without composition of multiple items
to make up product data, the model is forced to:

 Be simple, missing out on a lot of the needed information

 Have a lot of typically unused fields or use a large number of templates to cover

all the different product types. Both is not best-practice.

 Have a lot of redundant data for simil ar products or variants

 Forcing data into custom field types or encoding data using some custom
scheme

• Redundant data

Without separate repositories for storing shared information, redundant information will is
unavoidable.

• Templates overload.

Using a separate template for each product type soon becomes a problem with a large
number of different products

• Difficult to extend

With a single item for a product and without composition of multiple items to make up
product data, it becomes difficult to extend with custom data.

• Content Editing of redundant data is a real hassle

 Take advantage of CMS 7 features

By leveraging the new features in CMS 7, it’s possible to use buckets and features like Linq
based searches against custom product indexes, returning pro duct objects through the new

Hydration model. The Hydration model is similar to NHydrate and Nhibernate. For more

information, see the Data Definition API Cookbook for Sitecore 7

 Enable e-com vendors to easily map product data

Instead of forcing product data into a single item in an artificial construct, the data is stored in a

more natural way with a composite structure that will make it easier for ECS to integrate with,

customize and extend.

3.2.1 Minimum product concepts

The following lists represent the mini mum product concepts that need to be part of the product data
model.

1. Main product data like IDs - EAN, SKU, IBSN etc - , name, Brand, Model, tags etc.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 39 of 61

2. Multiple classification schemes aka multiple different categorization schemes

a. Typically products are stored in categories in the e-commerce system according to type.

b. For presentation, a different way of organizing products into categories is typically used.

3. Specifications and lookup values

a. Specifications, lookup and default values
are on three levels:

i. Categories. A category is
associated with a number of

specifications that goes for all

products in the same category.

The specifications are the same

regardless of the products and

their manufacturer.

i i. Product type. Specifications that
are specific to the given product

type. These specifications are

more closely related to the actual

product and its manufacturer.

i ii. Single product. Specifications that
only applies to the specific

product.

4. Product variant significant specifications

a. It must be possible to configure which
specifications that makes up the

difference between all variants of a

product, e.g. what specifications make up

the variants.

5. Related products

a. There are different types of relations
between products:

i. Variants of the same product

i i. Accessories

i ii. Cross-sell, up-sell etc

6. Resources

a. images and fi les

7. Manufacturers

a. Manufacturer information

8. Divisions

a. Divisions is a way to model an organization of divisions into a hierarchical structure,
which are used to tag products, so that are marked part of those division.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 40 of 61

3.3 Item templates and structure

The following sections describe the templates making up the Connect product data model and the
structure in which they are being used.

3.3.1 Item Templates used in the Product Data Model

In naming the templates for the product data model we have used the convention described in the
following section

Rule of Thumb and Naming Conventions

For each concept in the model, product, specification, type etc. there’s an entity template and a typically a
corresponding folder template, e.g. each type of entity is kept in a folder. The naming convention is that

the folder template name is in plural and the entity template name is in singular form. Example:

Specification represents a specification entity and Specifications represent the folder in which the

specifications are stored.

The product data model consists of data that are stored in separate repositories and data that is specific

for a given product. For settings that relates to the specific product, the corresponding temp late name is

prefixed with the word “Product”, for example the generic specification template is called specification,

whereas the product specific specification template is called ProductSpecification

Item templates

The item templates used in the product data model are displayed on the following screenshot.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 41 of 61

For every entity type, there’s usually a folder template that holds the individual items. The following table

describes the individual entity templates and list the corresponding folder template.

Entity template name Folder template name Description

Div ision Divisions A division represents a business unit and is used

to tag products and thereby marking them part of

the division. Filtering products by division will

return the products that are associated with the

division.

Divisions are stored in an individual repository in

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 42 of 61

a hierarchical manner. A division can have

multiple sub-divisions.

The Template Divisions is used as repository

folder for the hierarchy of divisions stored within.

Identification Type Identification Types Multiple identifiers can be associated with any

given product.

Identification Type is an enumeration of different

types of identification encoding schemes, e.g. a

product has both an EAN and SKU number

besides the internally used product code.

Identification Types is used as repository folder

for the identification types stored within.

Lookup Value Lookup Values A Lookup Value represents a key and value pair

with the item name being the key and value

stored in both short and long description. Each

set of lookup values are stored in its own Lookup

Values folder. Examples are Product Relation

Types and Resource Types.

Lookup Values is the folder template for lookup

values and it has a single description field

Manufacturer Manufacturers The Manufacturer template is used to store the

most essential information about a manufacturer,

e.g. Name, description, website URL and

Product URL macro.

The template Manufacturers is used as a

repository folder containing the manufacturers.

The folder is configured as a bucket

Product Product Repository A product item represents the core data of a

product and a point of reference to all related

repositories: Manufacturers, Divisions, Types,

Classifications

Products are stored in a bucket and consists of

multiple sub-items: Relations, Resources and

Specifications

--- Product Artifacts Product Artifacts is the folder template grouping

together miscellaneous repositories relating to

products like Manufacturers, Classifications,

Divisions, Types and global lookup values

Product Classification

Group

Product Classifications A product classification Group represent a

classification scheme. A lot of standards as well

as custom classification schemes exists in the

world today.

Multiple different classification schemes and

categorizations might be used concurrentl y in the

http://en.wikipedia.org/wiki/International_Article_Number_(EAN)
http://en.wikipedia.org/wiki/International_Article_Number_(EAN)

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 43 of 61

product data model, e.g. products could use both

the categorization used in the external

commerce system as well as UNSPSC

classification scheme. UNSPSC being The

United Nations Standard Products and Services

Code, which is a hierarchical convention that is

used to classify all products and services.

Classifying products and services with a

common coding scheme facilitates commerce

between buyers and sellers and is becoming

mandatory in the new era of electronic

commerce

A Product Classification Group contains a

hierarchical structure of items based on template

Product Classification.

Product Classification Groups are stored in a list

beneath a root folder based on template Product

Classifications.

Product Classification Product Classification

Group

A Product Classification represent a category

within one classification scheme (Product

Classification Group)

Multiple different classification schemes and
categorizations might be used concurrently in the

product data model. For further information see

description for Product Classification Group.

Product Classifications are structured in a

hierarchical manner beneath a Product

Classification Group.

Product Relation Product Relations A Product Relation represents a relation

between the given product and other products in

the repository

Product Resource Product Resources A product resource represents a media entity,

e.g. a fi le (brochure), an image (Main image or

alternate images). Resources are not always

stored in Sitecore Media Library and can be

represented by a URI.

Resources are stored in its own folder based on

template Product Resources under the product

item

Product Specification Product Specifications A product specification holds the specification

key and value or a reference to a value when

based on a fixed set key-value pair table

Product Type Product Types Products are based on a type and inherits all the

properties of the type. A product can only be of a

single type.

http://www.unspsc.org/

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 44 of 61

Types are stored in its own folder based on

template Product Types organized in a

hierarchical structure.

Sub-types inherit properties of its ancestors.

A type can contain definitions of Specifications,

Specifications Default Values and Specification

Options to limit the set of values from fixed set

key-value pair tables for a given type.

Specification Lookup Specifications A Specification Lookup represents the key of a

specification associated with a category or

product type and the table of possible values.

Specification Specifications A Specification represents the key of a

specification associated with a category or

product type

Specifications are stored in a Specifications

folder.

Specification Option Specification Options A Specification Option is used to limit the

possible values for a given product type.

Specification Options are used in connection

with Specification Lookups.

Specifications Default
Values

Product Type A folder for holding default values for
specifications related to a type. The folder has

no fields.

Branch templates

The product data model consists of the branch templates described in the following table

Branch template name Description

Product The branch template contains a composite tree

structure that represents a product with default

subfolders for related products, resources and

specifications.

The template is associated with the bucket that

makes up the main product repository.

Product Repository The branch installs the complete product

repository including all the repositories related to

products. Repositories like Divisions,

Manufacturers, Product Types, Classifications,

and lookups

The expanded branch templates are displayed on the following screenshot.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 45 of 61

3.3.2 Main product data in one product repository bucket

In order to store a large number of products, in a single product repository, a bucket is used. One product
consists of a main product item and a sub-tree of items containing values specific to the given product

and references to other repositories.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 46 of 61

The product template only contains the most essential information that applies to all products.

Product Variants

Generally a variant is considered a product in Connect, so there’s no distinction between a product and a
variant of a product. They are stored in the same way.

To save space and avoid duplication of data, the concept of a product family can be used. In a product
family there is one master product, which has all the default product data stored. The related product

variants refer to the master product and only contains values that differ from the master product.

A Product type can be regarded as the master product as it can hold default specifications etc. Product

variants must be assigned a product type and only the specifications that differ, needs to be set for the

variant.

3.3.3 Product relations, resources and specifications

Each product has a composite structure organized in a sub -tree for storing relations, resources and
specifications that apply to the particular product; see screenshot.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 47 of 61

3.3.4 Specifications

Specifications for products are stored in several different places in the product data model:

1. Global specifications
Specifications that are global across the entire product repository are stored in the global

specifications folder under /Product Repository/Lookups/Global Product Specification Lookups

(relative to the product repository).

These specifications are typically stored as lookup tables where a key and a set of pre -defined

values are defined.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 48 of 61

2. Classification specifications

For each classification scheme there’s typically a list of specifications associated with each

category. These are the specifications that make it possible to compare all products present

within a category made by different manufacturers.

It’s also the specifications normally used for navigated or facetted search

3. Type specifications

There’s a close relationship between products and its type and hence there are 3 pieces of

specification information available on types:

a. Specifications in form of keys or keys + values (lookup tables)

b. Specification options that narrows down the lookup table options for sub -types

c. Specification default values that contains values for specification and all products of the

given type will have those values given

4. Product specifications

Specifications that are unique to specific products can be stored under the product itself. Typically

most specifications will be on the product type.

Specification

A specification represents an attribute belonging to a category or a type. A specification can be a single
key or a key and a table with a set of fixed values.

For each specification there’s typically a specification value. The value is stored either on the type as

default value or directly on the product itself.

 Specifications can be defined on a category, meaning all products with the category assigned
have the specifications and should have corresponding specification values stored. On the

screenshot below the specifications for a category /Electronics/Smartphone is shown with the

specifications Height, Network types, Operating System and Storage. 3 of which also represents

tables of fixed lookup values.

 Specifications can be defined on the type, meaning all products of that type have the

specifications as attributes and should have corresponding values stored.

On the screenshot below the specifications for type /Smartphone/iPhone is shown with the

specifications Color and Product Version, both of which also represents tables of fixed lookup

values.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 49 of 61

Specification values

Specification values represent values for a specification and can be stored in the following two places.

 Specification values on product
Specifications are stored beneath the product item in a folder named Specifications. The folder is

the repository for key-value pairs based on template Product Specification

 Specifications on product type

Specifications are stored beneath a product type item in a folder named Specifications Default

Value. The folder is the repository for key-value pairs based on template Product Specification

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 50 of 61

3.4 The Object Domain Model

The object diagram below visualizes the object domain model. For more information, see the Sitecore
Commerce Connect Developer Guide.

There is a one to one correspondence between the product item templates and the objects.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 51 of 61

3.5 How to Implement a Custom Product Entity

When deciding whether to add a field to the main product template and corresponding object or add it to a
sub-item, you should ask the simple question:

Does the field apply to all products or not?

If not, then it doesn’t belong on the product template and corresponding product class.

The following steps are needed in order to extend the main product entity. The same procedure must be
followed for other product entities.

 Create a custom template that inherits from the default Product template

(/sitecore/templates/CommerceConnect/Products/Product) and extends it with further fields

 Create a custom Product class, that inherits from the default

Sitecore.Commerce.Entities.Products.Product class and extends it with further properties

 Create a custom ProductRepository class, which inherits from the default

Sitecore.Commerce.Data.Products.ProductRepository.
Override the following two methods to save and load the extended properties. Make sure to also

call the base implementation of these methods:

o protected override void UpdateEntityItem(Item entityItem, Product entity)

o protected override void PopulateEntity(Item entityItem, Product entity)

 Update the Sitecore.Commerce.Product.config fi le:
o Update the ProductRepository element:

 by replacing the value of the attribute type with the full type name of the custom

product repository class, see snippet below with type value in italic.

 by replacing the template ID set in the sub-element <template>. See snippet

below with template value in italic

 <productRepository type="Sitecore.Commerce.Data.Products.ProductRepository,

Sitecore.Commerce" singleInstance="true">

 <template>{47D1A39E-3B4B-4428-A9F8-B446256C9581}</template>

o Update the GUID of the ProductTemplateID in the IncludeTemplates section. For more
information, see the section 3.1.6 The product index

o Update the type attribute of the Product entity entry in the Commerce.Entities section of

the Sitecore.CommerceProduct.config

<commerce.Entities>

<Product type="Sitecore.Commerce.Entities.Products.Product, Sitecore.Commerce" />

 Update the GUID of the ProductTemplateID in the ExncludeTemplates section of the

Sitecore.Commerce.Products.LuceneDefaultIndexConfiguration.config fi le. For more information,

see the section 3.1.6 The default index.

 In case 2-way synchronizing is used, then:

o Create a custom ResolveProductChanges, that inherits from the default

Sitecore.Commerce.Pipelines.Products.SynchronizeProductEntity.ResolveProduc
tChanges class. For more information, see section

New properties which refer to items in related repositories, l ike Manufacturers, should load a collection of

the given type and populate the values. Some internal helper methods, l ike

PopulateEntityFieldCollections, are provided. Below is an example of how the Manufacturers collection is

populated while loading the product entity.

 entity.Manufacturers = this.PopulateEntityFieldCollections(

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 52 of 61

 entityItem,

 "Manufacturer",

 typeof(Manufacturer),

 new Dictionary<string, string> { { "ExternalId", "ExternalID" }, { "Name",

"Name" }, { "Description", "Description" } })

 .Cast<Manufacturer>().ToList();

The actual manufacturer type should be created by calling the Create method on the type

Sitecore.Commerce.Entities.EntityFactory, but this is left out to simplify the example.

The PopulateEntityFieldCollections method has the following signature:

 /// <summary>

 /// Fills the entity collections.

 /// </summary>

 /// <param name="entityItem">The entity item.</param>

 /// <param name="fieldName">Name of the field.</param>

 /// <param name="collectionMemberType">Type of the collection member.</param>

 /// <param name="properties">The properties.</param>

 /// <returns>

 /// The collection of the product entities.

 /// </returns>

 private IEnumerable<ProductEntity> PopulateEntityFieldCollections(Item entityItem,

string fieldName, Type collectionMemberType, IDictionary<string, string> properties)

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 53 of 61

3.6 How to Create a Custom ResolveChangesProcessor

For 2-way synchronization to work, a processor must be present, which compares the two entities
originating from Sitecore and the external system respectively.

A base processor Sitecore.Commerce.Pipelines.Products.ResolveChangesProcessor does most of
the work and resolves the configured SynchronizationStrategy to use for compariso n.

The responsibil ity of the processor is to read two product entities from Sitecore and the external system
respectively, compare and resolve the changes and return the resulting entity along with an indication of

where the result must be saved.

Note
The current ResolveChangesProcessor implementation only saves one collection of resulting entities to

be saved, which means the same instances will be saved to both Sitecore and the external system in

case the direction is set to both. A custom version could save different versions to two separate

collections to be saved in the two systems respectively.

Note
The two processors responsible for reading the product entities from Sitecore and the external system

respectively, must write the result to two distinct and different pipeline arguments, so that they do not

interfere.

To create a custom processor for a given entity type the following steps are needed:

1. Create a new class which inherites from ResolveChangesProcessor
Leave the constructor empty, but make sure to call the base constructor

2. Override the GetSitecoreEntities method. The method must read the stored Sitecore

entities and return an enumerable collection of objects of the given type. Naming

convention for the PipelineArgs collection is to prefix the type name with the word

“Sitecore” as the key. Example: “SitecoreManufacturers”

3. Override the GetExternalCommerceSystemEntities method. The method must read the

stored external entities and return an enumerable collection of objects of the given type.

Naming convention for the PipelineArgs is to simply use the type name as the key.

Example: “Manufacturers”

4. Override the SaveEntities method. The method must save the resulting entities to the

PipelineArgs collection. Naming convention is to use the type name as the key. Example:

“Manufacturers”

The implementation of the ResolveManufacturerChanges is shown in the code snippet below.

public class ResolveManufacturersChanges : ResolveChangesProcessor

 {

 /// <summary>

 /// Initializes an instance of the <see cref="ResolveManufacturersChanges" /> class.

 /// </summary>

 /// <param name="synchronizationStrategy">The synchronization strategy.</param>

 public ResolveManufacturersChanges([NotNull] ISynchronizationStrategy

synchronizationStrategy) : base(synchronizationStrategy)

 {

 }

 /// <summary>

 /// Gets entities stored in Sitecore.

 /// </summary>

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 54 of 61

 /// <param name="args">The arguments.</param>

 /// <returns>Sitecore entities.</returns>

 protected override IEnumerable<ProductEntity> GetSitecoreEntities(ServicePipelineArgs

args)

 {

 return args.Request.Properties["SitecoreManufacturers"] as

IEnumerable<ProductEntity> ?? Enumerable.Empty<Manufacturer>();

 }

 /// <summary>

 /// Gets entities stored in external commerce system.

 /// </summary>

 /// <param name="args">The arguments.</param>

 /// <returns>External commerce system entities.</returns>

 protected override IEnumerable<ProductEntity>

GetExternalCommerceSystemEntities(ServicePipelineArgs args)

 {

 return args.Request.Properties["Manufacturers"] as IEnumerable<ProductEntity> ??

Enumerable.Empty<Manufacturer>();

 }

 /// <summary>

 /// Saves the entities to the arguments.

 /// </summary>

 /// <param name="args">The arguments.</param>

 /// <param name="productEntities">The product entities.</param>

 protected override void SaveEntities(ServicePipelineArgs args,

IEnumerable<ProductEntity> productEntities)

 {

 args.Request.Properties["Manufacturers"] = productEntities.Cast<Manufacturer>();

 }

 }

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 55 of 61

3.7 How to Create a Custom Synchronization Strategy

In order to use a custom synchronization strategy it is necessary to perform the following two steps:

 1. Create new custom strategy class and implement ISynchronizationStrategy interface.

 This interface contains one Resolve method that receives direction of synchronization and base
product entity from external system and Sitecore.

 Resolve method should decide which system to update (ECS or Sitecore) and return the result.

namespace Sitecore.Commerce.Products

{

 using Sitecore.Commerce.Entities.Products;

 /// <summary>

 /// The SynchronizationStrategy interface.

 /// </summary>

 public interface ISynchronizationStrategy

 {

 /// <summary>

 /// Resolves the specified direction.

 /// </summary>

 /// <param name="direction">The direction.</param>

 /// <param name="externalSystemEntity">The external system entity.</param>

 /// <param name="sitecoreEntity">The entity from content management system.</param>

 /// <returns>The place, where we decide if entity is updated.</returns>

 UpdateIn Resolve(Direction direction, ProductEntity externalSystemEntity,

ProductEntity sitecoreEntity);

 }

}

 2. Register custom synchronization strategy class in Sitecore.Commerce.Products.config.

 To do this, change type attribute value of synchronizationStrategy element to custom
synchronization strategy type.

 <synchronizationStrategy
type="Sitecore.Commerce.Products.DateTimeSynchronizationStrategy, Sitecore.Commerce"
singleInstance="true" />

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 56 of 61

The default DateTime based strategy coming with Connect is the simplest possible strategy:

 /// <summary>

 /// The synchronization strategy based on updated date of entity in external system and

content management system.

 /// </summary>

 public class DateTimeSynchronizationStrategy : ISynchronizationStrategy

 {

 /// <summary>

 /// Resolves the specified direction.

 /// </summary>

 /// <param name="direction">The direction.</param>

 /// <param name="externalSystemEntity">The external system entity.</param>

 /// <param name="sitecoreEntity">The entity from content management system.</param>

 /// <returns>

 /// The place, where we decide if entity is updated.

 /// </returns>

 public UpdateIn Resolve(Direction direction, ProductEntity externalSystemEntity,

ProductEntity sitecoreEntity)

 {

 if (string.IsNullOrEmpty(sitecoreEntity.ExternalId) && (direction == Direction.Both

|| direction == Direction.Inbound))

 {

 return UpdateIn.Sitecore;

 }

 if (externalSystemEntity.Updated == sitecoreEntity.Updated)

 {

 return UpdateIn.None;

 }

 if (externalSystemEntity.Updated < sitecoreEntity.Updated)

 {

 if (direction == Direction.Both || direction == Direction.Outbound)

 {

 return UpdateIn.ExternalCommerceSystem;

 }

 }

 else

 {

 if (direction == Direction.Both || direction == Direction.Inbound)

 {

 return UpdateIn.Sitecore;

 }

 }

 return UpdateIn.None;

 }

 }

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 57 of 61

3.8 How to Implement a Custom ID Generator

The responsibil ity of the ID generator is to take a unique external ID in form of a string and return a
unique ID which can be used as an item ID, e.g. GUID. The default implementation is based on the MD5

hash algorithm.

Note
Sitecore ID’s must be unique and since the output from the IDGenerator is used as a Sitecore ID, it is

important to always prefix the unique external ID with an arbitrary but fixed string, in order to avoid

collision. For example, the IDs for manufacturers in the external system repository might have overlap

with the IDs for the products, even though they are unique within their own range. The input to

IDGenerator must therefore be in the following format: “Manufacturer “ + ManufacturerID and “Products “

+ ProductID respectively.

In order to use a custom ID generator, it is necessary to perform the following two steps:

1. Create new ID Generator class and implement IIdGenerator interface.

The interface has one StringToID method that accepts two parameters:

a. a string containing the value of the external ID of the given entity

b. a string containing a unique prefix to avoid collision between identical values used for

different entities.

The method returns a GUID as result, which is used to assign to the corresponding item in

Sitecore representing the external entity.

 /// <summary>

 /// Defines interface for id generator.

 /// </summary>

 public interface IIdGenerator

 {

 /// <summary>

 /// String to Sitecore ID.

 /// </summary>

 /// <param name="value">The value.</param>

 /// <param name="prefix">The prefix.</param>

 /// <returns>The generated ID</returns>

 [NotNull]

 ID StringToID([NotNull] string value, [NotNull] string prefix);

 }

2. Register custom ID Generator class in Sitecore.Commerce.Products.config.
To do this, change type attribute value of “idGenerator” element to the custom ID Generator type.

<idGenerator type="Sitecore.Commerce.Data.Products.Md5IdGenerator,
Sitecore.Commerce" singleInstance="true" />

The default implementation is based on the MD5 hash algorithm provided in .NET. The source code is

l isted below:

 /// <summary>

 /// Defines default implementation of id generator.

 /// </summary>

 public class Md5IdGenerator : IIdGenerator

 {

 /// <summary>

 /// String to Sitecore ID.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 58 of 61

 /// </summary>

 /// <param name="value">The value.</param>

 /// <param name="prefix">The prefix.</param>

 /// <returns>The generated ID</returns>

 public ID StringToID(string value, string prefix)

 {

 Assert.ArgumentNotNull(value, "value");

 Assert.ArgumentNotNull(prefix, "prefix");

 // Create a new instance of the MD5CryptoServiceProvider object.

 var md5Hasher = MD5.Create();

 // Convert the input string to a byte array and compute the hash.

 var data = md5Hasher.ComputeHash(Encoding.Default.GetBytes(prefix + value));

 return new ID(new Guid(data));

 }

}

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 59 of 61

3.9 Performance tuning

For information on steps taken to improve performance, see the Sitecore Commerce Connect Overview
document.

 Immediate or delayed bucket synchronization. When a new item is created in a bucket, it is

immediately placed in the root folder. In order to move it into the right place, the bucket needs

to be synchronized and there is a couple of ways it can be done. For more information on

how to enable delayed bucketing, see section 3.10 Delayed Bucket Synchronization.

o When synchronizing a single product, it can immediately be moved to the right place

in the bucket. Calling SynchronizeProduct as a single operation is doing this by

calling BucketManager.MoveItemIntoBucket(entityItem, root);

o Doing a bulk synchronization by calling SynchronizeProducts or

SynchronizeProductList can cause the creation of many new items that needs

to be synchronized. When doing bulk synchronizing, it is faster to delay the bucket

synchronization until all new product items have been processed. To further reduce

the time spent synchronizing the products bucket, a temporary bucket is used for new

product items. The temporary bucket is synchronized after all products have been

processed and the bucket content is moved to the main bucket. That will eliminate

the time spent touching all existing items i n the bucket, which could be significant,

e.g. adding a 1.000 new product items to a bucket with 1.000.000 product items, will

touch 1.001.000 items to make sure they have not changed.

 Multi-threaded synchronization. A single thread is by default spawned to synchronize products,

manufacturers, types, resources, divisions, and specifications in parallel. The threads are

spawned for each repository being synchronized. The number of threads to use can be

configured in the Sitecore.Commerce.Products.config fi le. The default is 1

<setting name="ProductSynchronization.NumberOfThreads" value="8" />

Note
Due to issues in Sitecore CMS, using more than 1 thread can result in a SQL server deadlock
situation, which is why the default configuration only specifies 1 threa d.

 Disabling of indexing, events and caching. Triggering of item events as well as indexing is

disabled while synchronizing in order not to waste resources on firing events or starting

indexing before synchronization is done. Indexing is turned on after synchronization has

finished. For more information, see section 3.1.6 Indexing.

 Reading product data ones and process it in multiple pipelines will reduce the number of calls

between Sitecore and the external systems. All product entities in Connect are synchronized
using its own pipeline, which naturally lends itself to reading the data from the external system

in the individual pipelines. In that case, synchronizing a single product can amount to a fair

amount of calls between the systems and each call takes time and resources. The design does

not prevent product data to be read ones initially and passed on to the individual sub -pipelines

for processing, reducing the number of calls between the systems.

 Resources can be located externally. Resources in Sitecore are stored as media items in the

media library. Media items are binary blobs and can be rather large and time consuming to

import into Sitecore and for that reason, resources can either be imported into Sitecore media

library or simply referred to externally. If resources are imported, they are stored in a bucketed

folder called Products under the media library. If not imported, they can be referred to by a URI

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 60 of 61

stored on the resource reference item. The default implementation of Connect supports both

scenarios.

Sitecor e C ommerce C onnect

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 61 of 61

3.10 Delayed Bucket Synchronization

There’s several ways to have products synchronized into the Bucket where the main product data is
stored. It can be done:

 Immediately, which is the default and fastest approach.

 At the end of the entire Commerce Connect product synchronization. This approach is also
implemented in Commerce Connect and can be activated by enabling the config fi le

Sitecore.Commerce.Products.DelayedSyncProductRepository.config.disabled

This is done by removing the postfix “.disabled”

